skip to main content


Search for: All records

Creators/Authors contains: "Richardson, Jonathan W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ground-based gravitational-wave (GW) detectors are a frontier large-scale experiment in experimental astrophysics. Given the elusive nature of GWs, the ground-based detectors have complex interacting systems made up of exquisitely sensitive instruments which makes them susceptible to terrestrial noise sources. As these noise transients - termed as glitches - appear in the detector's main data channel, they can mask or mimic real GW signals resulting in false alarms in the detection pipelines. Given their high rate of occurrence compared to astrophysical signals, it is vital to examine these glitches and probe their origin in the detector's environment and instruments in order to possibly eliminate them from the science data. In this paper we present a tensor factorization-based data mining approach to finding witness events to these glitches in the network of heterogeneous sensors that monitor the detectors and build a catalog which can aid human operators in diagnosing the sources of these noise transients. Available from: https://openreview.net/forum?id=O9q0ma6Oh5e 
    more » « less
  2. Adaptive optics are crucial for overcoming the fabrication limits on mirror curvature in high-precision interferometry. We describe a low-cost thermally actuated bimorph mirror with 200 mD linear response, which meets dynamic range and low aberration requirements for theA+upgrade of the Laser Interferometer Gravitational-wave Observatory (LIGO). Its deformation and operation limits were measured and verified against finite element simulation.

     
    more » « less
  3. Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry–Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and, hence, limit GW sensitivity, but it suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises.

     
    more » « less